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ON A PROBLEM OF NOMIZU-SMYTH ON A NORMAL
CONTACT RIEMANNIAN MANIFOLD

KENTARO YANO & SHIGERU ISHIHARA

The study of complex Einstein hypersurfaces of K#hlerian manifolds of
constant holomorphic sectional curvature has been initiated by Smyth [12]
and continued by Nomizu and Smyth [7]. (See also, Ako [1], Chern [2],
Kobayashi [S], Smyth [13], Takahashi [14], Yano and Ishihara [17]).

The main purpose of the present paper is to study the so-called invariant
C-Einstein submanifolds of codimension 2 in a normal contact Riemannian
manifold. We call a problem of this kind a problem of Nomizu-Smyth.

First of all we recall in §1 the definition and properties of contact Rieman-
nian manifolds, and in §2 the fundamental formulas for submanifolds of
codimension 2 in a Riemannian manifold.

In §§3,4 we obtain the fundamental formulas respectively for submani-
folds and invariant submanifolds of codimension 2 in a contact Riemannian
manifold.

In the last §5, we study the problem of Nomizu-Smyth, that is, the problem
of determining invariant C-Einstein submanifolds of codimension 2 in a nor-
mal contact Riemannian manifold of constant curvature.

1. Contact Riemmannian manifolds

First of all for later use we recall the definition and some properties of a
contact Riemannian manifold. A (2n+ 1)-dimensional differentiable manifold
M is said to admit a contact structure if there exists on M a 1-form E = E,dx*
such that the rank of the tensor field

1
(1.1 Fji = 5@,E, — 5.E)

is 2n everywhere on M, where 9, denotes the operator 3/0x?, (x*) are the
local coordinates of M, the indices 4, i, j, k, - - - run over the range {1, - - -
-+-,2n + 1}, and the so-called Einstein’s summation convention is used
with respect to this system of indices. A manifold admitting a contact struc-
ture is called a contact manifold.
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If a contact manifold M is orientable, we can find a vector field E* on M
such that

(1.2) F,Ei=0, EE =1,

It is now well-known that there exists on M a positive definite Riemannian
metric G,; such that

Ev: = GihEh »
(1.3) FrF' = — "+ EE",
thFisGts = sz‘ - EjEz' ’
where
(14) Fih - Fz‘sGSh >

(G**) being the inverse of the matrix (G,,;) (cf. [3]). A differentiable mani-
fold admitting such a structure (F,*, E;, E*, G,,) is called a contact Rieman-
nian manifold.

We denote by N,;* the Nijenhuis tensor formed with F;?, i.e.,

N =F9F*»— F'%,F;»— (3,F;! — 3,FHF.
If the tensor field
S;" = N;* + 0,E;, — 9,E,)E*

vanishes identically, the contact Riemannian manifold is said to be normal
(cf. [9], [10]). A contact Riemmanian manifold is normal if and only if

(1.5) V.E;=F,,
(1.6) V,F* = — GLE" + 3'E,,

¥ ; denoting the covariant differentiation with respect to the Riemannian con-
nection {;#;} determined by G;; (cf. [4]).

Differentiating (1.5) covariantly and taking account of (1.3) and (1.6), we
have

V.W,E" = — G ;E* + 6E;,
which gives
1.7 K" E'=0E;—d%E, ,

where K, ;;* = K, ,,;G** denotes the curvature tensor of G,;. Transvecting
(1.7) with arbitrary vectors X* and Y,, we find
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(EYK ;N X = (Y X)E! — (EX)Y7,
which shows that there exists a vector Y” satisfying
(EiYhKihkj)Xk = A7

for arbitrarily given vectors X* and A*. Thus we have

Lemma 1. Any normal contact Riemannian manifold is irreducible as a
Riemannian manifold [15].

When the Ricci tensor K;; = K,;;* has components of the form

(1.8) K,, = aG,; + bE,E,

with constants @ and b, the contact Riemannian manifold M is said to be a
C-Einstein manifold. When b = 0 in (1.8), the manifold M is an Einstein
manifold.

Differentiating (1.8) covariantly, by virtue of (1.5) we have

1.9) ViK;; = b(Fy,;E; + FME]) s

when the contact manifold M is normal. Conversely, if we assume that the
normal contact Riemannian manifold satisfies the condition (1.9), by virtue
of (1.5) we find

(1.10) 7Ky, — bEE) = 0.

On the other hand, according to Lemma 1, the normal contact Riemannian
manifold M is irreducible. Thus, taking account of (1.10), we have

K;,; — bE,E; = aG;

with a constant a, since the left hand side is a symmetric tensor. That is to
say, the manifold M is a C-Einstein manifold. Therefore, we have

Lemma 2. In order that a normal contact Riemannian manifold M is a
C-Einstein manifold, it is necessary and sufficient that M satisfies the condition
(1.9).

2. Submanifolds of codimension 2 in a Riemannian manifold

We consider a submanifold V of codimension 2 on a differentiable manifold
M of dimension 2n + 1 with positive definite Riemannian metric G,;, and
denote the parameter representation of the submanifold ¥ by

xt = x™M(u%)

where (u®) are the local coordinates of V, and the indices a, b, c, d, e, f run
over the range {1, ..., 2n—1}.
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Put

Byt = d,x*

d, denoting the operator d/du®, and denote a pair of mutually orthogonal unit
vector fields normal to V' by C*» and D", which are locally defined in each
coordinate neighborhood of V. Then the Riemannian metric induced on V' is
given by

(21) 8er = Gjchiji 5
and we have

G,CByt =0, G,DBi=0,

(2.2) - . o
G,CiCi=1, G,.DIC'=0, G, DDi=1.

If we denote by I, the so-called van der Waerden-Bortolotti covariant dif-
ferentiation on V, i.e., if we put
(2.3) V.B)» = 8.B,” + {;*s} B/B,* — {*:} B,",
(24) VcCh = acch + {]hz} Bchi s Vth == ath + {jhi}Bchi 5

{;*:;} and {,%,} being the Christoffel symbols formed respectively with G,, and
g.s, then, taking account of (2.2), we have

(25) VcBbh = kcbch + kcth P
(2.6) V.Ch = — heB,r + LD, V.D* = — kB, — LC*

where 4, and k., are the second fundamental tensors, and [, the third funda-
mental tensor with respect to C* and D*. As is well-known, we have

hcb = hbc s kcb = kbc P
hca — hcbgb(z P kca = kcbgba 5

where (g°°) is the inverse of the matrix (g,,). (2.5) are equations of Gauss,
and (2.6) equations of Weingarten. We also have

(27) KkjithchijiBah - Rdcba - (hdu,hcb - hcahdb + kdakcb - kcakdb) H

KkjithchijiCh - (thcb - Vchdb) - (ldkcb - lckdb) ’

(2.8) o
Ky ;i1 Bo*BIByiDY = (V ko — Vokgy) + (e — Lhas)

(2-9) KkijdchjCiDh = lec - Vcld + hdakca - hcakda »

where K, ;;, and Rg,,, are the curvature tensors of the enveloping manifold
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M and the submanifold V" respectively. (2.7) are equations of Gauss, (2.8)
-equations of Codazzi, and (2.9) equations of Ricci.

When the enveloping manifold M is of constant curvature ¢, that is, when
K, jin is of the form '

Kkjih = C(Gthji - Gthki) s
equations (2.7), (2.8) and (2.9) become respectively

(210) Rdcba = C(gdagcb - gcagdb) + (hdahcb - hcahdb + kdakcb - kcakdb)a

(thcb - ldkcb) - (Vchdb - lckdb) =0 »
(decb + ldhcb) - (Vckdb + lchdb) =0 s

2.12) Vol — Vdy + hyok,y — hkgy = 0.

(2.11)

Transvecting (2.10) with g¢¢, we have
(213) Rcb = 2(” - 1)Cgcb + (heehcb + keekcb) - hcahba - kcakba ’

where R., = g%%R ., is the Ricci tensor of the submanifold V.

Equations (2.11) imply

Lemma 3. For any submanifold of codimension 2 in a Riemannian mani-
fold of constant curvature, the tensor fields

Ryer = Voo — Likey s kooy = Vikey + Lihey

are symmetric in all their indices d, ¢, b.

3. Submanifolds of codimension 2 in a contact Riemannian manifold

We now assume that the enveloping manifold M is a contact Riemannian
manifold of dimension 2n + 1 with structure (F,*, E,, E*, G,;), and that there
is given in M a submanifold V' of codimension 2. Then, for the transforms of
By, C* and D* by F;*, due to the relations F;C/Ct = F;;DiD* = 0 and

F;,CiD* = — F,,DiCt we have equations of the form
(3.1) FB,t = {,%B," + p,C* + ¢q,D*,
FCt = — peB,* + rD* |
(3.2) : Pl
F2Dt = — q*B,* — rC*,

where pe and g° are defined by

pe=pig"*,  q° = q,8"
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respectively, f,¢ define a global tensor field of type (1, 1) in V, independent
of the choice of C* and D*, p¢ and g* are two local vector fields, and r is a
global scalar field in V, independent of the choice of C* and D*. On the sub-
manifold V the vector field E* has the form

(3.3) E* = e*B,*» + aC* + pD*,

where e® define a global vector field in V and «, 8 two local scalar fields.
Considering the transform of (3.1) by F,» and taking account of (1.2),
(3.1), (3.2) and (3.3), we find

fofs" = — 38 + €e® + DD + drg®
(3.4) f6°pa = aey + rqy ,
fbaqa. = lBeb - Dy »
where
(3.5) . €y = gpa€” .
Similarly, we have from (3.2)
(3:6) ppt=1—0a"—r, gq*=1—-§—r, p,g°=—af.
Taking the transform of (3.3) by F;* and using (3.1) and (3.2), we find
3.7 f,%€® = ap® + Bq%, p.e®* =pr, q.e* = —ar.
On the other hand, due to g;,E/E? = 1, from (3.3) it follows
3.9) ee*=1—a — B .

Now differentiating (3.1) covariantly on the submanifold V" and using (2.5),
(2.6) we obtain
(V;F;»)BB," + F;"h,,C* + kD)
= (V. ,)B" + %(heaCt + keoD")
+ (Fep)C* + po(— hB,* + 1.D")
+ (F.qs)D* + q)(— k,*B,* — I.C") .

3.9

If we assume that the enveloping manifold M is normal, then we have, from
(1.6) and (3.9), ’

Vefo® = — gev€® + 82ey — hepD® + APy — kopq@® + kGy
(3‘10) chb = — 08 — rkcb - hca.fba + lcqb H

chb = - .Bgcb + rhcb - kcafba - lcpb .
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Differentiating (3.2), (3.3) covariantly on the submanifold ¥ and taking
account of (1.5), (1.6), (3.1) and (3.2), for normal M we find

(3.11) Veor = — hog® + kob®,

V.et = f,@ + ahy® + B8k,%,
(3.12) b [} [ ﬁ [
Vi = pp — yoe® + 13117 s Vb;B = g, — kpe® — aly .
4. Invariant submanifolds of codimension 2 in a contact
Riemannian manifold

We now assume that the tangent space of the submanifold V of codimen-
sion 2 in a contact Riemannian manifold M is invariant under the action of
F.* at every point, and we call such a submanifold an invariant submanifold.

For an invariant submanifold, we obtain

(4-1) Fithi = fba'Bah )
that is,
4.2) p,=0, g=0

in (3.1). Thus we have

F*Ct = rD* F Dt = — rC*
from (3.2),
(4.3) fofof = — 8% + een,
ae, =0, pe, =0
from (3.4),
“4.5) l—a*~r=0, 1 -8 —-r=0, ag=0

from (3.6), and finally
4.6) f,2¢* =0, Br=0, ar=0
from (3.7). Moreover, equations (4.5) imply
a=8=0, r=1.
Conversely, if r* = 1, then equations (3.6) show that ps = 0, g =0, a =0,

g =0, and consequently V is invariant because of (3.1) and the Riemannian
metric g,, being positively definite.
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Thus, in order that a submanifold V of codimension 2 in a contact Rie-
mannian manifold M be invariant, it is necessary and sufficient that r* = 1 in
(3.2) (cf. [8D).

In the sequal, we always consider invariant submanifolds and hence may
assume that r = 1. We then have, for an invariant submanifold V,

4.7) F/Byi = [,2B,*, F/Ci=D, F/Di= — Ct;
4.8) ‘ E*» — e*B,* ;
4.9) foof = — 05 + ee”,

’ fo2e® =0, et =1.

Transvecting (4.8) with G,,B,? and taking account of (2.1), (3.5) and (4.1),
we find

(4.10) EB, =e,.

If we transvert the last equation of (1.3) with B./B,* and take account of
2.1), 4.7) and (4.10), then we obtain

“4.11) fffo%8ea = 8er — €0€p -
On the other hand, we have, from (1.1) and (1.4),

F/G,y, = %(ajEi _5.E) .

Transvecting this equation with B,/B,?, and taking account of (2.1), (4.7),
(4.10) and 9,B,*» = 3,B.”, we find

(412) fcaga,b — %(aceb - abec) .

Thus equations (3.5), (4.9), (4.11) and (4.12) show that any invariant sub-
manifold of codimension 2 in a contact Riemannian manifold is also a contact

Riemannian manifold.

We now assume that the enveloping contact Riemannian manifold M is
normal and the submanifold V is invariant. From the first equations of (3.12)
and (3.10) we then have, respectively,

Vet = f*,

4.13)
chba = — 8u€® + 521617

by virtue of p* =0, ¢* =0, =0, p = 0.
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Equations (4.13) show that any invariant submanifold of codimension 2 in
a normal contact Riemannian manifold is also a normal contact Riemannian
manifold. ‘

When the enveloping manifold M is normal and the submanifold V' is in-
variant, from the second and third equations of (3.10) and (3.12), by virtue
of p, =0, =0,a=0, =0, r =1 we obtain, respectively,

(414) kcb = - hca.fba ’ hcb = kcafba s
(4.15) hbae“ = 0 s kbae“ = 0 .

Since f., = f.284, is skew-symmetric, and A, k., are symmetric, equations
(4.14) give

(416) hca,fba - hbafca = O ’ kca,fba - kba,fca = O ’
(417) hcc = hcbng =0 s kcc = hcbg(:b =0,

which thus show that any invariant submanifojd of codimension 2 in a normal
contact Riemannian manifold is minimal (cf. [8]).

Denote the tensor fields 4,2, k,* and f,@ of type (1, 1) by A, k and f respec-
tively. Then (4.14), (4.6) are respectively equivalent to the conditions

(4.18) h = kf, k= — hf,
(4.19) hf +fh=0, kf +fk=0.
From (4.18) and (4.19), we thus have A* = A(kf) = — h(fk) = — (hf)k
= kz, or
(4.20) =k,

and also hk = (kf)k = k(fk) = — k(kf) = — kh, or
4.21) hk + kh =0.

5. Invariant C-Einstein submanifolds of codimension 2 in a
normal contact Riemannian manifold

We assume that the enveloping manifold M is a normal contact Riemannian
manifold of constant curvature, which necessarily equals to 1 (cf. 6], [10],
[11], [16}), and the invariant submanifold ¥V of codimension 2 imbedded in
M is a C-Einstein manifold. Taking account of (2.13) with ¢ = 1 and (4.17),
we then see that the Ricci tensor of ¥ has the form

Rcb = 2(” - 1)gcb - hcahba - kcakba .
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On the other hand, since V is a C-Einstein manifold, we have
R., = ag,, + be.e;

with constants a and b. Thus

s ag., + beey = 2(n — 1)g — % — Kooky® .

If the submanifold V is an Einstein manifold, i.e., if & = 0 in (5.1), then
from (4.20) and (5.1) we find

R=kK=2

with constant 1 and the identity tensor I. Since the induced metric of the
submanifold is positive definite, the above equation, together with (4.15),
implies

h=k=0.

Thus we have

Proposition 5.1. Any invariant Einstein submanifold V in a normal con-
tact Riemannian manifold of constant curvature is totally geodesic.

Taking account of (4.20), from (5.1) we have

a b
byt = ko ke = (n 11— E)gc,, - et

from which, taking account of (4.15), we find
(52) hcahba = kca,kba - #(gcb - eceb)

with a constant g. Transvecting (5.2) with f,° and taking account of “4.14),
we obtain

(53) hda,kca = #fdc ’ kdahca = - ,ufdc .

Differentiating both equations of (4.14) covariantly and taking account of
(4.13), (4.14) and (4.15), we find

Pocr = kacafo® + kaces »

kyey = — Racafo® — Paces »

5.4

where
(5-5) hdcb = thcb - ldkcb ’ kdcb = decb + ldhcb .

Transvecting (5.4) with e” and taking account of (4.9), we have
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b o b
(56) ' hdcbe - kdc H] kdcbe - - hdc .

If we differentiate (5.2) covariantly and take account of (4.13) and (5.3),
then we find

hdcbhab + hdabhcb = — ,U(fdcea + fda.ec) s

5.7
( kdcbkab + kdabkcb = — ,u(fdcea + fzia.ec) .

According to Lemma 3 stated in §2, we have k., = k.4, Which and the
second equation of (5.4) imply

hdcefbe + hdceb = hcbefde + hcbed .

Transvecting the above equation with f,* and taking account of Lemma 3,
(4.9), (4.14) and (5.6), we have, after changing the indices,

haee = — folffhsen + kaveo + kevey

If we substitute the equation above into the first equation of (5.7) written
as

haehs® + hapohe® = — plfacea + facee) 5
and take account of (4.15) and (5.3), then we find
faifo*he’hyen + fhphs” — pgreea} = 0,
from which
(5.8) [ohRreq + fRrenhs’ — p8rc€a = €fleq s

where [, is a certain tensor field of type (0, 2), because f,7e, = 0 and f,” is of
rank 2n — 2. Transvecting (5.8) with e/ and taking account of (5.6), we have

lca = fbehcbkea. + fcekebhab — pec,
which reduces to
lca == ,U(cha - 3ecea.)

because of (4.18), (4.19) and (5.2). If we substitute this in (5.8), then we
obtain

fbehcbhfea + fcehfebha,b = 2,U(gca. - ecea)ef + ,U(gfc - efec)ea. .

If we transvect the above equation with f,° and take account of (4.9), (4.18),
(4.19), (5.3) and (5.6), then we find
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hdehfea - hfdbhab + ,Ufafed = /-!(2fdaef - ffdea) s
that is,

hdehfea - hfdbhab = ,ll(zfdaef - ffdea - fafed) >
from which and (5.7) it follows that

hfeahde = — ,ll(ffdea. + fadef) .

Transvecting the above equation with 4, and taking account of (4.14),
(5.2) and (5.6), we find

5.9 Ryve = Kpveq + koser + kyqe,
Similarly, we have
(5.10) kiyo = — hppeq — hosey, — Mygey .

Thus from (5.5), (5.9) and (5.10) we arrive at

Proposition 5.2, Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

thba — lfkbzz = kfbea + koser + kpe€s

(A)
Vikyo + Ly = — hpe, — hype, — hyge; .

Differentiating (2.10) covariantly and using the above condition (A) we ob-
tain

Proposition 5.3. Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

(B) VeRdcba = Sedcbea + Secdaeb + Sebadec + Seabced )
where
(510) Sedcb = kedhcb - kechdb + heckdb - hedkcb .

If we transvect equation (B) with g?¢ and take account of (4.17), (5.3) and
(5.10), then we have

Proposition 5.4. Let V be an invariant submanifold of codimension 2 in
a normal contact Riemannian manifold of constant curvature. If V is a C-
Einstein manifold, then

(C) VeRcb = b(feceb + febec) 3

b being constant.
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Any invariant submanifold in a normal contact Riemannian manifold is also
a normal contact Riemannian manifold. Taking account of Lemma 2 stated
in §1, from Propositions 5.2, 5.3 and 5.4 we thus obtain

Theorem. For an invariant submanifold V of codimension 2 in a normal
contact Riemannian manifold of constant curvature, the condition that V be
a C-Einstein manifold is equivalent to one of the conditions (A), (B) and (C).

Transvecting (B) with e and taking account of (4.15) and (5.10), we find

Sedcb = (VeRdcba)ea 3

substitution of which in the condition (B) gives immediately

Proposition 5.5. [f an invariant submanifold of codimension 2 in a nor-
mal contact Riemannian manifold of constant curvature is a C-Einstein mani-
fold, then the identity

VeRaeve = (VeRdcbf)efea + (VeRdcfa)efeb
+ (FRupva)e’e. + PR po)eley

holds.
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