ON A PROBLEM OF NOMIZU-SMYTH ON A NORMAL CONTACT RIEMANNIAN MANIFOLD

KENTARO YANO & SHIGERU ISHIHARA

The study of complex Einstein hypersurfaces of Kählerian manifolds of constant holomorphic sectional curvature has been initiated by Smyth [12] and continued by Nomizu and Smyth [7]. (See also, Ako [1], Chern [2], Kobayashi [5], Smyth [13], Takahashi [14], Yano and Ishihara [17]).

The main purpose of the present paper is to study the so-called invariant C-Einstein submanifolds of codimension 2 in a normal contact Riemannian manifold. We call a problem of this kind a problem of Nomizu-Smyth.

First of all we recall in §1 the definition and properties of contact Riemannian manifolds, and in §2 the fundamental formulas for submanifolds of codimension 2 in a Riemannian manifold.

In §§3, 4 we obtain the fundamental formulas respectively for submanifolds and invariant submanifolds of codimension 2 in a contact Riemannian manifold.

In the last $\S 5$, we study the problem of Nomizu-Smyth, that is, the problem of determining invariant C-Einstein submanifolds of codimension 2 in a normal contact Riemannian manifold of constant curvature.

1. Contact Riemmannian manifolds

First of all for later use we recall the definition and some properties of a contact Riemannian manifold. A (2n+1)-dimensional differentiable manifold M is said to admit a *contact structure* if there exists on M a 1-form $E = E_i dx^i$ such that the rank of the tensor field

$$(1.1) F_{ji} = \frac{1}{2} (\partial_j E_i - \partial_i E_j)$$

is 2n everywhere on M, where ∂_i denotes the operator $\partial/\partial x^i$, (x^h) are the local coordinates of M, the indices h, i, j, k, \cdots run over the range $\{1, \cdots, 2n+1\}$, and the so-called Einstein's summation convention is used with respect to this system of indices. A manifold admitting a contact structure is called a *contact manifold*.

Communicated June 24, 1968.

If a contact manifold M is orientable, we can find a vector field E^h on M such that

(1.2)
$$F_{ii}E^{i}=0$$
, $E_{i}E^{i}=1$.

It is now well-known that there exists on M a positive definite Riemannian metric G_{ji} such that

(1.3)
$$E_{i} = G_{ih}E^{h} ,$$

$$F_{t}{}^{h}F_{i}{}^{t} = -\delta_{i}^{h} + E_{i}E^{h} ,$$

$$F_{j}{}^{t}F_{i}{}^{s}G_{ts} = G_{ii} - E_{j}E_{i} ,$$

where

$$(1.4) F_{i}^{h} = F_{is}G^{sh},$$

 (G^{sh}) being the inverse of the matrix (G_{ji}) (cf. [3]). A differentiable manifold admitting such a structure $(F_i{}^h, E_i, E^h, G_{ji})$ is called a *contact Riemannian manifold*.

We denote by N_{ii}^h the Nijenhuis tensor formed with F_{ii}^h , i.e.,

$$N_{ji}{}^{h} = F_{j}{}^{t}\partial_{t}F_{j}{}^{h} - F_{i}{}^{t}\partial_{t}F_{j}{}^{h} - (\partial_{j}F_{i}{}^{t} - \partial_{i}F_{j}{}^{t})F_{t}{}^{h}.$$

If the tensor field

$$S_{ji}^{h} = N_{ji}^{h} + (\partial_{j}E_{i} - \partial_{i}E_{j})E^{h}$$

vanishes identically, the contact Riemannian manifold is said to be normal (cf. [9], [10]). A contact Riemannian manifold is normal if and only if

$$(1.5) V_j E_i = F_{ji} ,$$

$$(1.6) V_i F_i{}^h = -G_{ii} E^h + \delta^h_i E_i,$$

 V_j denoting the covariant differentiation with respect to the Riemannian connection $\{j^h_i\}$ determined by G_{ji} (cf. [4]).

Differentiating (1.5) covariantly and taking account of (1.3) and (1.6), we have

$$\nabla_{k}\nabla_{j}E^{h}=-G_{kj}E^{h}+\delta_{k}^{h}E_{j}$$
,

which gives

$$(1.7) K_{kji}{}^{h}E^{i} = \delta_{k}^{h}E_{j} - \delta_{j}^{h}E_{k} ,$$

where $K_{kji}{}^{h} = K_{kjis}G^{sh}$ denotes the curvature tensor of G_{ji} . Transvecting (1.7) with arbitrary vectors X^{k} and Y_{h} , we find

$$(E^iY^hK_{ihk}^j)X^k = (Y_{\circ}X^s)E^j - (E_{\circ}X^s)Y^j,$$

which shows that there exists a vector Y^h satisfying

$$(E^i Y^h K_{ihk}{}^j) X^k = A^j$$

for arbitrarily given vectors X^h and A^h . Thus we have

Lemma 1. Any normal contact Riemannian manifold is irreducible as a Riemannian manifold [15].

When the Ricci tensor $K_{ji} = K_{sji}^{s}$ has components of the form

$$(1.8) K_{ji} = aG_{ji} + bE_{j}E_{i}$$

with constants a and b, the contact Riemannian manifold M is said to be a C-Einstein manifold. When b=0 in (1.8), the manifold M is an Einstein manifold.

Differentiating (1.8) covariantly, by virtue of (1.5) we have

$$(1.9) V_k K_{ii} = b(F_{ki} E_i + F_{ki} E_i) ,$$

when the contact manifold M is normal. Conversely, if we assume that the normal contact Riemannian manifold satisfies the condition (1.9), by virtue of (1.5) we find

$$(1.10) V_{k}(K_{ji} - bE_{j}E_{i}) = 0.$$

On the other hand, according to Lemma 1, the normal contact Riemannian manifold M is irreducible. Thus, taking account of (1.10), we have

$$K_{ji} - bE_j E_i = aG_{ji}$$

with a constant a, since the left hand side is a symmetric tensor. That is to say, the manifold M is a C-Einstein manifold. Therefore, we have

Lemma 2. In order that a normal contact Riemannian manifold M is a C-Einstein manifold, it is necessary and sufficient that M satisfies the condition (1.9).

2. Submanifolds of codimension 2 in a Riemannian manifold

We consider a submanifold V of codimension 2 on a differentiable manifold M of dimension 2n + 1 with positive definite Riemannian metric G_{ji} , and denote the parameter representation of the submanifold V by

$$x^h = x^h(u^a)$$

where (u^a) are the local coordinates of V, and the indices a, b, c, d, e, f run over the range $\{1, \dots, 2n-1\}$.

Put

$$B_h{}^h = \partial_h x^h$$
,

 ∂_b denoting the operator $\partial/\partial u^b$, and denote a pair of mutually orthogonal unit vector fields normal to V by C^h and D^h , which are locally defined in each coordinate neighborhood of V. Then the Riemannian metric induced on V is given by

$$g_{ch} = G_{ti}B_{c}{}^{j}B_{h}{}^{i},$$

and we have

(2.2)
$$G_{ji}C^{j}B_{b}^{i} = 0, \qquad G_{ji}D^{j}B_{b}^{i} = 0, G_{ji}C^{j}C^{i} = 1, \quad G_{ji}D^{j}C^{i} = 0, \quad G_{ji}D^{j}D^{i} = 1.$$

If we denote by V_c the so-called van der Waerden-Bortolotti covariant differentiation on V, i.e., if we put

$$(2.3) V_c B_b{}^h = \partial_c B_b{}^h + \{_i{}^h{}_i\} B_c{}^j B_b{}^i - \{_c{}^a{}_b\} B_a{}^h,$$

$$(2.4) V_c C^h = \partial_c C^h + \{_i{}^h{}_i\} B_c{}^j C^i , V_c D^h = \partial_c D^h + \{_i{}^h{}_i\} B_c{}^j D^i ,$$

 $\{j^h_i\}$ and $\{e^a_b\}$ being the Christoffel symbols formed respectively with G_{ji} and g_{cb} , then, taking account of (2.2), we have

$$(2.5) V_c B_b{}^h = h_{cb} C^h + k_{cb} D^h ,$$

$$(2.6) V_c C^h = -h_c{}^a B_a{}^h + l_c D^h, V_c D^h = -k_c{}^a B_a{}^h - l_c C^h,$$

where h_{cb} and k_{cb} are the second fundamental tensors, and l_c the third fundamental tensor with respect to C^h and D^h . As is well-known, we have

$$h_{cb} = h_{bc}$$
, $k_{cb} = k_{bc}$, $h_{c}^{a} = h_{cb}g^{ba}$, $k_{c}^{a} = k_{cb}g^{ba}$,

where (g^{cb}) is the inverse of the matrix (g_{cb}) . (2.5) are equations of Gauss, and (2.6) equations of Weingarten. We also have

$$(2.7) \quad K_{kjih}B_{a}{}^{b}B_{c}{}^{j}B_{b}{}^{i}B_{a}{}^{h} = R_{acba} - (h_{aa}h_{cb} - h_{ca}h_{db} + k_{da}k_{cb} - k_{ca}k_{db}),$$

(2.8)
$$K_{kjih}B_{a}{}^{k}B_{c}{}^{j}B_{b}{}^{i}C^{h} = (\nabla_{a}h_{cb} - \nabla_{c}h_{ab}) - (l_{a}k_{cb} - l_{c}k_{ab}),$$

$$K_{kjih}B_{a}{}^{k}B_{c}{}^{j}B_{b}{}^{i}D^{h} = (\nabla_{a}k_{cb} - \nabla_{c}k_{ab}) + (l_{a}h_{cb} - l_{c}h_{ab}),$$

(2.9)
$$K_{kjih}B_{d}{}^{k}B_{c}{}^{j}C^{i}D^{h} = \nabla_{a}l_{c} - \nabla_{c}l_{d} + h_{d}{}^{a}k_{ca} - h_{c}{}^{a}k_{da},$$

where K_{kjih} and R_{deba} are the curvature tensors of the enveloping manifold

M and the submanifold V respectively. (2.7) are equations of Gauss, (2.8) equations of Codazzi, and (2.9) equations of Ricci.

When the enveloping manifold M is of constant curvature c, that is, when K_{kjih} is of the form

$$K_{kiih} = c(G_{kh}G_{ii} - G_{ih}G_{ki}),$$

equations (2.7), (2.8) and (2.9) become respectively

$$(2.10) \quad R_{dcba} = c(g_{da}g_{cb} - g_{ca}g_{db}) + (h_{da}h_{cb} - h_{ca}h_{db} + k_{da}k_{cb} - k_{ca}k_{db}),$$

$$(\nabla_d h_{cb} - l_d k_{cb}) - (\nabla_c h_{db} - l_c k_{db}) = 0 ,$$

$$(\nabla_d k_{cb} + l_d h_{cb}) - (\nabla_c k_{db} + l_c h_{db}) = 0 ,$$

$$(2.12) V_d l_c - V_c l_d + h_d^a k_{ca} - h_c^a k_{da} = 0.$$

Transvecting (2.10) with g^{da} , we have

$$(2.13) R_{cb} = 2(n-1)cg_{cb} + (h_e^e h_{cb} + k_e^e k_{cb}) - h_{ca}h_b^a - k_{ca}k_b^a,$$

where $R_{cb} = g^{da}R_{dcba}$ is the Ricci tensor of the submanifold V.

Equations (2.11) imply

Lemma 3. For any submanifold of codimension 2 in a Riemannian manifold of constant curvature, the tensor fields

$$h_{dcb} = V_d h_{cb} - l_d k_{cb}$$
, $k_{dcb} = V_d k_{cb} + l_d h_{cb}$

are symmetric in all their indices d, c, b.

3. Submanifolds of codimension 2 in a contact Riemannian manifold

We now assume that the enveloping manifold M is a contact Riemannian manifold of dimension 2n+1 with structure $(F_i{}^h, E_i, E^h, G_{ji})$, and that there is given in M a submanifold V of codimension 2. Then, for the transforms of $B_b{}^h$, C^h and D^h by $F_i{}^h$, due to the relations $F_{ji}C^jC^i=F_{ji}D^jD^i=0$ and $F_{ji}C^jD^i=-F_{ji}D^jC^i$ we have equations of the form

(3.1)
$$F_{i}{}^{h}B_{b}{}^{i} = f_{b}{}^{a}B_{a}{}^{h} + p_{b}C^{h} + q_{b}D^{h},$$

(3.2)
$$F_{i}{}^{h}C^{i} = -p^{a}B_{a}{}^{h} + rD^{h}, F_{i}{}^{h}D^{i} = -q^{a}B_{a}{}^{h} - rC^{h},$$

where p^a and q^a are defined by

$$p^a = p_b g^{ba}$$
, $q^a = q_b g^{ba}$

respectively, $f_b{}^a$ define a global tensor field of type (1, 1) in V, independent of the choice of C^h and D^h , p^a and q^a are two local vector fields, and r is a global scalar field in V, independent of the choice of C^h and D^h . On the submanifold V the vector field E^h has the form

$$(3.3) E^h = e^a B_a^h + \alpha C^h + \beta D^h,$$

where e^a define a global vector field in V and α , β two local scalar fields.

Considering the transform of (3.1) by F_{i}^{h} and taking account of (1.2), (3.1), (3.2) and (3.3), we find

(3.4)
$$f_{c}{}^{a}f_{b}{}^{c} = -\delta_{b}^{a} + e_{b}e^{a} + p_{b}p^{a} + q_{b}q^{a} ,$$

$$f_{b}{}^{a}p_{a} = \alpha e_{b} + rq_{b} ,$$

$$f_{b}{}^{a}q_{a} = \beta e_{b} - rp_{b} ,$$

where

$$(3.5) e_b = g_{ba}e^a.$$

Similarly, we have from (3.2)

$$(3.6) p_a p^a = 1 - \alpha^2 - r^2, q_a q^a = 1 - \beta^2 - r^2, p_a q^a = -\alpha\beta.$$

Taking the transform of (3.3) by F_{i}^{h} and using (3.1) and (3.2), we find

$$(3.7) f_b{}^a e^b = \alpha p^a + \beta q^a , \quad p_a e^a = \beta r , \quad q_a e^a = -\alpha r .$$

On the other hand, due to $g_{ji}E^{j}E^{i}=1$, from (3.3) it follows

(3.8)
$$e_a e^a = 1 - \alpha^2 - \beta^2.$$

Now differentiating (3.1) covariantly on the submanifold V and using (2.5), (2.6) we obtain

(3.9)
$$(\nabla_{j}F_{i}^{h})B_{c}^{j}B_{b}^{i} + F_{i}^{h}(h_{cb}C^{i} + k_{cb}D^{i})$$

$$= (\nabla_{c}f_{b}^{a})B_{a}^{h} + f_{b}^{a}(h_{ca}C^{h} + k_{ca}D^{h})$$

$$+ (\nabla_{c}p_{b})C^{h} + p_{b}(-h_{c}^{a}B_{a}^{h} + l_{c}D^{h})$$

$$+ (\nabla_{c}q_{b})D^{h} + q_{b}(-k_{c}^{a}B_{a}^{h} - l_{c}C^{h}) .$$

If we assume that the enveloping manifold M is normal, then we have, from (1.6) and (3.9),

$$\nabla_{c}f_{b}{}^{a} = -g_{cb}e^{a} + \delta_{c}^{a}e_{b} - h_{cb}p^{a} + h_{c}{}^{a}p_{b} - k_{cb}q^{a} + k_{c}{}^{a}q_{b},$$
(3.10)
$$\nabla_{c}p_{b} = -\alpha g_{cb} - rk_{cb} - h_{ca}f_{b}{}^{a} + l_{c}q_{b},$$

$$\nabla_{c}q_{b} = -\beta g_{cb} + rh_{cb} - k_{ca}f_{b}{}^{a} - l_{c}p_{b}.$$

Differentiating (3.2), (3.3) covariantly on the submanifold V and taking account of (1.5), (1.6), (3.1) and (3.2), for normal M we find

$$(3.11) V_c r = -h_{cb} q^b + k_{cb} p^b ,$$

(3.12)
$$V_{b}e^{a} = f_{b}{}^{a} + \alpha h_{b}{}^{a} + \beta k_{b}{}^{a} ,$$

$$V_{b}{}^{a} = p_{b} - h_{ba}e^{a} + \beta l_{b} , \qquad V_{b}\beta = q_{b} - k_{ba}e^{a} - \alpha l_{b} .$$

4. Invariant submanifolds of codimension 2 in a contact Riemannian manifold

We now assume that the tangent space of the submanifold V of codimension 2 in a contact Riemannian manifold M is invariant under the action of F_i^h at every point, and we call such a submanifold an *invariant submanifold*. For an invariant submanifold, we obtain

$$(4.1) F_i{}^h B_b{}^i = f_b{}^a B_a{}^h,$$

that is,

$$(4.2) p_b = 0, q_b = 0$$

in (3.1). Thus we have

$$F_i{}^hC^i=rD^h$$
, $F_i{}^hD^i=-rC^h$

from (3.2),

(4.3)
$$f_c{}^a f_b{}^c = -\delta_b^a + e_b e^a,$$
$$\alpha e_b = 0, \quad \beta e_b = 0$$

from (3.4),

$$(4.5) 1 - \alpha^2 - r^2 = 0, 1 - \beta^2 - r^2 = 0, \alpha\beta = 0$$

from (3.6), and finally

(4.6)
$$f_b{}^a e^b = 0$$
, $\beta r = 0$, $\alpha r = 0$

from (3.7). Moreover, equations (4.5) imply

$$\alpha = \beta = 0$$
, $r^2 = 1$.

Conversely, if $r^2 = 1$, then equations (3.6) show that $p^a = 0$, $q^a = 0$, $\alpha = 0$, $\beta = 0$, and consequently V is invariant because of (3.1) and the Riemannian metric g_{cb} being positively definite.

Thus, in order that a submanifold V of codimension 2 in a contact Riemannian manifold M be invariant, it is necessary and sufficient that $r^2 = 1$ in (3.2) (cf. [8]).

In the sequal, we always consider invariant submanifolds and hence may assume that r = 1. We then have, for an invariant submanifold V,

(4.7)
$$F_i{}^h B_b{}^i = f_b{}^a B_a{}^h$$
, $F_i{}^h C^i = D^h$, $F_i{}^h D^i = -C^h$;

$$(4.8) E^h = e^a B_a{}^h ;$$

(4.9)
$$f_c{}^a f_b{}^c = -\delta_b^a + e_b e^a , f_b{}^a e^b = 0 , \qquad e_a e^a = 1 .$$

Transvecting (4.8) with $G_{ih}B_{b}^{i}$ and taking account of (2.1), (3.5) and (4.1), we find

$$(4.10) E_i B_b{}^i = e_b .$$

If we transvert the last equation of (1.3) with $B_c{}^jB_b{}^i$ and take account of (2.1), (4.7) and (4.10), then we obtain

$$(4.11) f_c^e f_b^d g_{ed} = g_{cb} - e_c e_b .$$

On the other hand, we have, from (1.1) and (1.4),

$$F_{j}{}^{h}G_{ih} = \frac{1}{2}(\partial_{j}E_{i} - \partial_{i}E_{j}).$$

Transvecting this equation with $B_c{}^jB_b{}^i$, and taking account of (2.1), (4.7), (4.10) and $\partial_c B_b{}^h = \partial_b B_c{}^h$, we find

$$(4.12) f_c{}^a g_{ab} = \frac{1}{2} (\partial_c e_b - \partial_b e_c).$$

Thus equations (3.5), (4.9), (4.11) and (4.12) show that any invariant submanifold of codimension 2 in a contact Riemannian manifold is also a contact Riemannian manifold.

We now assume that the enveloping contact Riemannian manifold M is normal and the submanifold V is invariant. From the first equations of (3.12) and (3.10) we then have, respectively,

by virtue of $p^a = 0$, $q^a = 0$, $\alpha = 0$, $\beta = 0$.

Equations (4.13) show that any invariant submanifold of codimension 2 in a normal contact Riemannian manifold is also a normal contact Riemannian manifold.

When the enveloping manifold M is normal and the submanifold V is invariant, from the second and third equations of (3.10) and (3.12), by virtue of $p_b = 0$, $q_b = 0$, $\alpha = 0$, $\beta = 0$, r = 1 we obtain, respectively,

$$(4.14) k_{cb} = -h_{ca}f_{b}{}^{a}, h_{cb} = k_{ca}f_{b}{}^{a},$$

$$(4.15) h_{ba}e^a = 0, k_{ba}e^a = 0.$$

Since $f_{cb} = f_c{}^d g_{db}$ is skew-symmetric, and h_{cb} , k_{cb} are symmetric, equations (4.14) give

$$(4.16) h_{ca}f_b{}^a - h_{ba}f_c{}^a = 0, k_{ca}f_b{}^a - k_{ba}f_c{}^a = 0,$$

(4.17)
$$h_c^c = h_{cb}g^{cb} = 0$$
, $k_c^c = h_{cb}g^{cb} = 0$,

which thus show that any invariant submanifold of codimension 2 in a normal contact Riemannian manifold is minimal (cf. [8]).

Denote the tensor fields $h_b{}^a$, $k_b{}^a$ and $f_b{}^a$ of type (1, 1) by h, k and f respectively. Then (4.14), (4.6) are respectively equivalent to the conditions

$$(4.18) h = kf, k = -hf,$$

(4.19)
$$hf + fh = 0, \quad kf + fk = 0.$$

From (4.18) and (4.19), we thus have $h^2 = h(kf) = -h(fk) = -(hf)k$ = k^2 , or

$$(4.20) h^2 = k^2,$$

and also hk = (kf)k = k(fk) = -k(kf) = -kh, or

$$(4.21) hk + kh = 0.$$

5. Invariant C-Einstein submanifolds of codimension 2 in a normal contact Riemannian manifold

We assume that the enveloping manifold M is a normal contact Riemannian manifold of constant curvature, which necessarily equals to 1 (cf. [6], [10], [11], [16]), and the invariant submanifold V of codimension 2 imbedded in M is a C-Einstein manifold. Taking account of (2.13) with c=1 and (4.17), we then see that the Ricci tensor of V has the form

$$R_{cb} = 2(n-1)g_{cb} - h_{ca}h_b{}^a - k_{ca}k_b{}^a$$
.

On the other hand, since V is a C-Einstein manifold, we have

$$R_{cb} = ag_{cb} + be_c e_b$$

with constants a and b. Thus

$$(5.1) ag_{cb} + be_c e_b = 2(n-1)g_{cb} - h_{ca}h_b{}^a - k_{ca}k_b{}^a.$$

If the submanifold V is an Einstein manifold, i.e., if b = 0 in (5.1), then from (4.20) and (5.1) we find

$$h^2 = k^2 = \lambda I$$

with constant λ and the identity tensor *I*. Since the induced metric of the submanifold is positive definite, the above equation, together with (4.15), implies

$$h = k = 0$$
.

Thus we have

Proposition 5.1. Any invariant Einstein submanifold V in a normal contact Riemannian manifold of constant curvature is totally geodesic.

Taking account of (4.20), from (5.1) we have

$$h_{ca}h_{b}{}^{a}=k_{ca}k_{b}{}^{a}=\left(n-1-\frac{a}{2}\right)g_{cb}-\frac{b}{2}e_{c}e_{b}$$
,

from which, taking account of (4.15), we find

(5.2)
$$h_{ca}h_{b}{}^{a} = k_{ca}k_{b}{}^{a} = \mu(g_{cb} - e_{c}e_{b})$$

with a constant μ . Transvecting (5.2) with $f_a{}^b$ and taking account of (4.14), we obtain

(5.3)
$$h_{da}k_c{}^a = \mu f_{dc}, \qquad k_{da}h_c{}^a = -\mu f_{dc}.$$

Differentiating both equations of (4.14) covariantly and taking account of (4.13), (4.14) and (4.15), we find

(5.4)
$$h_{acb} = k_{aca} f_b{}^a + k_{ac} e_b , k_{acb} = -h_{aca} f_b{}^a - h_{ac} e_b ,$$

where

$$(5.5) h_{deb} = \nabla_d h_{cb} - l_d k_{cb} , k_{deb} = \nabla_d k_{cb} + l_d h_{cb} .$$

Transvecting (5.4) with e^b and taking account of (4.9), we have

$$(5.6) h_{dcb}e^b = k_{dc}, k_{dcb}e^b = -h_{dc}.$$

If we differentiate (5.2) covariantly and take account of (4.13) and (5.3), then we find

(5.7)
$$h_{acb}h_a{}^b + h_{dab}h_c{}^b = -\mu(f_{ac}e_a + f_{da}e_c), k_{acb}k_a{}^b + k_{dab}k_c{}^b = -\mu(f_{dc}e_a + f_{da}e_c).$$

According to Lemma 3 stated in §2, we have $k_{cdb} = k_{cbd}$, which and the second equation of (5.4) imply

$$h_{ace}f_b^{\ e} + h_{ac}e_b = h_{cbe}f_d^{\ e} + h_{cb}e_d.$$

Transvecting the above equation with $f_a{}^b$ and taking account of Lemma 3, (4.9), (4.14) and (5.6), we have, after changing the indices,

$$h_{dch} = - f_d^{f} f_c^{e} h_{feh} + k_{dh} e_c + k_{ch} e_d$$
.

If we substitute the equation above into the first equation of (5.7) written as

$$h_{dcb}h_{a}{}^{b} + h_{dba}h_{c}{}^{b} = -\mu(f_{dc}e_{a} + f_{da}e_{c})$$
,

and take account of (4.15) and (5.3), then we find

$$f_a{}^f \{ f_b{}^e h_c{}^b h_{fea} + f_c{}^e h_{feb} h_a{}^b - \mu g_{fc} e_a \} = 0$$

from which

(5.8)
$$f_b^e h_c^b h_{fea} + f_c^e h_{feb} h_a^b - \mu g_{fc} e_a = e_f l_{ca} ,$$

where l_{ca} is a certain tensor field of type (0, 2), because $f_d{}^f e_f = 0$ and $f_d{}^f$ is of rank 2n - 2. Transvecting (5.8) with e^f and taking account of (5.6), we have

$$l_{ca} = f_b^{\ e} h_c^{\ b} k_{ea} + f_c^{\ e} k_{eb} h_a^{\ b} - \mu e_c e_a$$
,

which reduces to

$$l_{ca} = \mu(2g_{ca} - 3e_c e_a)$$

because of (4.18), (4.19) and (5.2). If we substitute this in (5.8), then we obtain

$$f_b{}^e h_c{}^b h_{fea} + f_c{}^e h_{feb} h_a{}^b = 2\mu (g_{ca} - e_c e_a) e_f + \mu (g_{fc} - e_f e_c) e_a$$
.

If we transvect the above equation with $f_a{}^c$ and take account of (4.9), (4.18), (4.19), (5.3) and (5.6), then we find

$$h_{d}^{e}h_{fea} - h_{fdb}h_{a}^{b} + \mu f_{af}e_{a} = \mu(2f_{da}e_{f} - f_{fd}e_{a}),$$

that is,

$$h_d^e h_{fea} - h_{fdb} h_a^b = \mu (2f_{da} e_f - f_{fd} e_a - f_{af} e_d)$$
,

from which and (5.7) it follows that

$$h_{fea}h_a^e = -\mu(f_{fa}e_a + f_{aa}e_f).$$

Transvecting the above equation with h_b^a and taking account of (4.14), (5.2) and (5.6), we find

$$(5.9) h_{fba} = k_{fb}e_a + k_{af}e_b + k_{ba}e_f.$$

Similarly, we have

$$(5.10) k_{fba} = -h_{fb}e_a - h_{af}e_b - h_{ba}e_f.$$

Thus from (5.5), (5.9) and (5.10) we arrive at

Proposition 5.2. Let V be an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature. If V is a C-Einstein manifold, then

Differentiating (2.10) covariantly and using the above condition (A) we obtain

Proposition 5.3. Let V be an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature. If V is a C-Einstein manifold, then

$$V_e R_{dcba} = S_{edcb} e_a + S_{ecda} e_b + S_{ebad} e_c + S_{eabc} e_d ,$$

where

$$(5.10) S_{edcb} = k_{ed}h_{cb} - k_{ec}h_{db} + h_{ec}k_{db} - h_{ed}k_{cb}.$$

If we transvect equation (B) with g^{da} and take account of (4.17), (5.3) and (5.10), then we have

Proposition 5.4. Let V be an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature. If V is a C-Einstein manifold, then

$$(C) V_e R_{cb} = b(f_{ec} e_b + f_{eb} e_c) ,$$

b being constant.

Any invariant submanifold in a normal contact Riemannian manifold is also a normal contact Riemannian manifold. Taking account of Lemma 2 stated in §1, from Propositions 5.2, 5.3 and 5.4 we thus obtain

Theorem. For an invariant submanifold V of codimension 2 in a normal contact Riemannian manifold of constant curvature, the condition that V be a C-Einstein manifold is equivalent to one of the conditions (A), (B) and (C).

Transvecting (B) with e^a and taking account of (4.15) and (5.10), we find

$$S_{edcb} = (V_e R_{dcba}) e^a$$
,

substitution of which in the condition (B) gives immediately

Proposition 5.5. If an invariant submanifold of codimension 2 in a normal contact Riemannian manifold of constant curvature is a C-Einstein manifold, then the identity

$$\begin{aligned} \nabla_e R_{dcba} &= (\nabla_e R_{dcbf}) e^f e_a + (\nabla_e R_{dcfa}) e^f e_b \\ &+ (\nabla_e R_{dfba}) e^f e_c + (\nabla_e R_{fcba}) e^f e_d \end{aligned}$$

holds.

Bibliography

- M. Ako, Submanifolds in Fubinian manifolds, Kōdai Math. Sem Rep. 19 (1967) 103-128.
- [2] S. S. Chern, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Differential Geometry 1 (1967) 21-31.
- [3] Y. Hatakeyama, On the existence of Riemannian metric associated with a 2-form of rank 2r, Tôhoku Math. J. 14 (1962) 162-166.
- [4] Y. Hatakeyama, Y. Ogawa & S. Tanno, Some properties of manifolds with contact metric structures, Tôhoku Math. J. 15 (1963) 42-48.
- [5] S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Differential Geometry 1 (1967) 369-370.
- [6] M. Kurita, On a normal contact metric manifolds, J. Math. Soc. Japan 13 (1963) 304-318.
- [7] K. Nomizu & S. Smyth, Differential geometry of complex hypersurfaces. II, to appear.
- [8] M. Okumura, On contact metric immersion, to appear in Ködai Math. Sem. Rep.
- [9] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tôhoku Math. J. 12 (1960) 459-476.
- [10] S. Sasaki & Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure. II, Tôhoku Math. J. 13 (1961) 281-294.
- [11] —, On differentiable manifolds with contact metric structure, J. Math. Soc. Japan 14 (1962) 249-271.
- [12] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967) 246-266.
- [13] —, Homogeneous complex hypersurfaces, to appear.
- [14] T. Takahashi, Hypersurfaces with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan 19 (1967) 199-204.
- [15] Y. Tashiro, On contact structure of hypersurfaces in complex manifolds. I, II, J. Math. Soc. Japan 14 (1962) 249-271.

- [16] Y. Tashiro & S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep. 15 (1963) 176-183.
 [17] K. Yano & S. Ishihara, Normal circle bundles of complex hypersurfaces, Kōdai Math. Sem. Rep. 20 (1968) 29-53.

TOKYO INSTITUTE OF TECHNOLOGY